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Abstract. Changes of coordinates represent one of the most effective ways of deriving solvable
potentials from ordinary differential equations for separate special functions. Here we relax the
standard Hermiticity requirement and find an innovative construction which leads to unusual,
complex potentials. Their energy spectrum is shown to stay real after a weakening of the Hermiticity
of the Schrödinger equation to its mere invariance under the combined P (parity) and T (time-
reversal) symmetry. This ultimately results in richer bound-state spectra. Some of our new exactly
solvable potentials generalize the current textbook models. Details are given for constructions
based on the hypergeometric and confluent hypergeometric special functions.

1. Introduction

In the majority of quantum mechanical problems the Hamiltonian of the system is Hermitian,
and this requirement guarantees that the energy eigenvalues are real. In some cases, however,
the physical situation is such that the application of non-Hermitian Hamiltonians is justified.
This happens, for example, for complex potentials used mainly in nuclear physics and in
accounting for the absorption of incident particles. In these models the discrete energy
eigenvalues become complex, in general. Recently, another mechanism of weakening the
Hermiticity requirement was also introduced in quantum mechanics. In this formalism of
PT -symmetric quantum mechanics [1] the Hamiltonian is required to be invariant under the
simultaneous action of the P parity and the T time-reversal operations. For one-dimensional
potentials of non-relativistic quantum mechanics this invariance requires (V (−x))∗ = V (x).
Potentials exhibitingPT invariance are usually complex, nevertheless, their bound-state energy
eigenvalues were often found to be real. In this analysis of PT -invariant potentials various
approaches have been applied such as the Fourier transformation [2], semiclassical estimates
[3], numerical calculations [4], Sturm–Liouville-like theory [5], variational techniques [6] or
perturbation methods [7].

Exact analytical solutions to some problems have also been given [8–18]. Most of the
exactly solvable PT -symmetric potentials have analogues in usual quantum mechanics. In
some cases PT invariance is reached by simply setting the coupling constants of the odd
potential terms to imaginary values. This was easy with potentials defined originally as one-
dimensional problems on the full x-axis [8–10]. In some other cases the coordinate x is shifted
with an imaginary constant to x − iε. One important aspect of this imaginary coordinate shift
was that it cancelled the singularities typically appearing in some potentials at x = 0 (such as
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the centrifugal barrier), and then these originally radial problems could be naturally extended to
the full x-axis [2, 11, 12]. For another class of potentials asymptotically deformed integration
paths are defined to secure normalizability of the solutions [13–18].

It is not surprising that these exotic complex potentials had some unusual features. For
example, bound (i.e. normalizable) states have been found at positive energies [18]. We note,
however, that a similar situation has been encountered for ‘conventional’ complex potentials as
well: the number of normalizable states was found to be larger than those having Re(E) < 0
when the potential had an imaginary component (see, e.g., [19] for a simple analytical study
for the Pöschl–Teller potential).

The aim of this paper is to study analytically solvable PT -symmetric potentials by
employing a method which has been used previously to derive exactly solvable potentials in a
systematic way [20]. This method is based on transforming the Schrödinger equation into the
second-order differential equation of a special function by appropriate variable transformations.
In [20] it was found that this method leads to a natural classification scheme of solvable
potentials; in particular, the shape-invariant potentials [21] can all be found with it. It was
also found that this approach can naturally be linked with the formalism of supersymmetric
quantum mechanics [22] and some group-theoretical methods [23].

In the present study we focus on the question of how the PT invariance requirement
can be implemented for potentials with solutions related to the hypergeometric and confluent
hypergeometric functions. With this systematic approach the exactly solvable PT -symmetric
potentials can be put into a more general framework, and one might also hope to find further
solvable problems. It turns out that our method is rather suitable to interpret some aspects of
PT -symmetric potentials in a simple way. For example, the reality of the energy eigenvalues
arises entirely naturally. Furthermore, potentials which are turned PT symmetric by an
imaginary coordinate shift are all easily generated within the same approach.

In section 2 we present the formalism of our method, and in section 3 we apply it to
potentials solved by hypergeometric and confluent hypergeometric functions. Finally, in
section 4 we summarize the results.

2. The basic formalism

Following the discussion of [20], let us consider transformation of the Schrödinger equation

d2ψ

dx2
+ (E − V (x))ψ(x) = 0 (2.1)

into the second-order differential equation of a special function F(z). For this, we search for
solutions in the form

ψ(x) = f (x)F (z(x)). (2.2)

At the moment we do not specify the domain of definition for the coordinate x itself. Later
on, in section 3 we shall return to this issue and its importance for PT -symmetric problems.

Once we substitute equation (2.2) in our Schrödinger equation (2.1) we arrive at the
ordinary differential equation of the special function F(z)

d2F

dz2
+Q(z)

dF

dz
+ R(z)F (z) = 0 (2.3)

where, by construction,

z′′

(z′)2
+

2f ′

z′f
= Q(z(x)) (2.4)
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and

f ′′

(z′)2f
+
E − V (x)
(z′)2

= R(z(x)). (2.5)

From these equations an explicit expression follows for E − V (x):

E − V (x) = z′′′(x)
2z′(x)

− 3

4

(
z′′(x)
z′(x)

)2

+ (z′(x))2
(
R(z(x))− 1

2

dQ(z)

dz
− 1

4
Q2(z(x))

)
. (2.6)

Besides the functionsQ(z) and R(z) defining the special function F(z), this formula contains
only the function representing a variable transformation, z(x). This also applies to the solutions
themselves. They can be written as

ψ(x) ∼ (z′(x))−1/2 exp

(
1

2

∫ z(x)

Q(z) dz

)
F(z(x)). (2.7)

We are left with the task of finding such a functional form of z(x)which takes our Schrödinger
equation (2.6) into an exactly and completely solvable problem.

Of course, any randomly chosen z(x) function satisfies the latter ambitious requirement
for a particular potential V (x) and energy E. We only cannot guarantee, in general, that any
other physical solution of the same physical problem in question can be found in the same
manner as well. In this perspective, a useful way of finding reasonable z(x) functions has been
proposed by Bhattacharjie and Sudarshan [24]. According to them, if there is a constant (E)
on the left-hand side of (2.6), then there must be one on the right-hand side too. In [20] this fact
was exploited, and a systematic list of potentials was compiled by identifying certain terms
found on the right-hand side of (2.6) with a constant C. This assignment leads to first-order
differential equations for z of the type

(
dz

dx

)2

φ(z) = C (2.8)

where φ(z) is a function of z originating from R(z) orQ(z).
The general solution of the latter differential equation is given by the formula∫

φ1/2(z) dz = C1/2x + δ. (2.9)

This defines an implicit function x(z) and, in many cases of practical interest, also the explicit
z(x) function we need [20].

In the standard Hermitian context of the latter paper one considers mainly δ = 0, in order
to set z(0) = 0. The general δ �= 0 choice will be considered here instead. It corresponds
to a shift of the coordinate and reflects a trivial and also rarely relevant transformation for
potentials defined on the real x-axis.

Its importance occurs, first of all, for all the radial problems in the Hermitian case. In
what follows, we shall also emphasize its enhanced relevance occurring in the context of
PT -symmetric quantum mechanics. Mainly, we shall try to determine under what kinds of
conditions can one obtain a PT -symmetric modification of the formalism of [20]. It turns out
that the whole approach supplies a natural framework for these investigations and also helps
to understand how and why PT -symmetric complex potentials can have purely real spectra.



7168 G Lévai and M Znojil

3. A systematic search for PT -symmetric potentials

Here we apply the procedure outlined in section 2 to potentials with bound-state solutions
containing hypergeometric and confluent hypergeometric functions. Actually, these
correspond to the rather general Natanzon [25] and Natanzon confluent [26] potential classes.
In order to reduce the complexity of the formulae, we in fact, consider the Jacobi and the
generalized Laguerre polynomials as the special function F(z) in equation (2.2). These
polynomials can be obtained from theF(a, b; c; z)hypergeometric and theF(a, c; z) confluent
hypergeometric function by the a = −n (or b = −n) substitution [27], and this special
reduction represents an equivalent treatment with the general problem in all those cases where
the physical bound-state solutions can be expressed with only one particular solution of the
underlying second-order differential equation, the Schrödinger equation. For the sake of
completeness, we show in the appendix how the corresponding formulae are obtained for the
hypergeometric and the confluent hypergeometric functions.

It was found in [20] that this method naturally leads to the identification of all known
shape-invariant potentials [21], however, it is applicable to the systematic exploration of much
wider potential classes, such as Natanzon potentials [25]. (These also include so-called implicit
potentials, where the solutions z(x) in (2.9) are obtained only in the implicit x(z) form [28–
32].) Now we adapt the formalism to the PT -symmetric quantum mechanics. It turns out that
as opposed to the original treatment, the integration constant δ now plays an important role;
in fact it generally has to be chosen as a purely imaginary number to obtain PT -symmetric
problems. In what follows we chose the constant C to be real.

3.1. The Jacobi polynomials P (α,β)n (z)

In this case we have Q(z) = (β − α)(1 − z2)−1 − (α + β + 2)z(1 − z2)−1, while R(z) =
n(n + α + β + 1)(1 − z2)−1 and (2.6) has the form

E − V (x) = z′′′(x)
2z′(x)

− 3

4

(
z′′(x)
z′(x)

)2

+
(z′(x))2

1 − z2(x)

(
n +

α + β

2

) (
n +

α + β

2
+ 1

)

+
(z′(x))2

(1 − z2(x))2

[
1 −

(
α + β

2

)2

−
(
α − β

2

)2
]

−2z(x)(z′(x))2

(1 − z2(x))2

(
α + β

2

) (
α − β

2

)
. (3.1)

Note that the parameters of the Jacobi polynomial, α and β appear everywhere only in the
(α + β)/2 and (α − β)/2 combinations.

Let us consider first the PI case [20] defined by the differential equation (z′)2(1− z2)−1 =
C, which sets the third term on the right-hand side of (3.1) to a constant. Rewriting the first
two terms as the function of z and rearranging the equation we obtain

E − V (x) = C
(
n +

α + β + 1

2

)2

+
C

1 − z2(x)

[
1

4
−

(
α + β

2

)2

−
(
α − β

2

)2
]

− 2Cz(x)

1 − z2(x)

(
α + β

2

) (
α − β

2

)
. (3.2)

The z(x) functions are the solutions of the differential equation defining the PI case, and their
general form is given by the actual version of (2.9):∫

dz

(1 − z2)1/2
= C1/2x + δ. (3.3)
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Depending on the nature of C (whether it is positive or negative) and that of z2 (whether it is
larger or smaller than 1), there are several solutions possible. In [20] we found five different
cases labelled by z(x) = i sinh(ax), cosh(ax), cos(ax), cos(2ax) and cosh(2ax) forC = −a2,
−a2, a2, 4a2 and −4a2. The fourth and fifth of these cases yield essentially the same potentials
as the third and the second cases, respectively, but the functional forms obtained for V (x) are
seemingly different and are handled traditionally as separate potentials. z(x) = sin(ax) is also
a solution, but it gives the same potential as z(x) = cos(ax), only shifted by π/a, therefore
we did not consider it as a separate solution in [20].

Let us now examine how these z(x) functions behave under a PT transformation if we
allow δ �= 0 in (3.3). The transformation properties of z(x) also determine those ofE andV (x)
in (3.2). It is easy to show that PT invariance of the potential cannot be reached, in general, if
δ has a non-zero real component, because then the finite shift along the coordinate x renders
V (x) and its PT -transformed version into essentially different forms. (There is an exception
for those cases when z(x) is a trigonometric function, because then the potentials are periodic.
However, if we consider these potentials only within a single period, then PT invariance is
lost for these special cases too.) If we set δ = iε, then the transformation properties of the
z(x) functions specified previously are the following:

PT : z(x) = i sinh(ax + iε) −→ z̃(x) ≡ (i sinh(a(−x) + iε))∗ = i sinh(ax + iε) = z(x)
PT : z(x) = cosh(ax + iε) −→ z̃(x) ≡ (cosh(a(−x) + iε))∗ = cosh(ax + iε) = z(x)
PT : z(x) = cos(ax + iε) −→ z̃(x) ≡ (cos(a(−x) + iε))∗ = cos(ax + iε) = z(x)
PT : z(x) = sin(ax + iε) −→ z̃(x) ≡ (sin(a(−x) + iε))∗ = − sin(ax + iε) = −z(x).

(3.4)

The first three cases have been considered previously in [20], while the fourth one has to be
considered a new independent possibility if we generalize our study to PT -symmetric quantum
mechanics.

The PT -transformed version of equation (3.2) is

Ẽ − Ṽ (x) ≡ E∗ − (V (−x))∗

= C
(
n +

α∗ + β∗ + 1

2

)2

+
C

1 − z̃2(x)

[
1

4
−

(
α∗ + β∗

2

)2

−
(
α∗ − β∗

2

)2
]

− 2Cz̃(x)

1 − z̃2(x)

(
α∗ + β∗

2

) (
α∗ − β∗

2

)
. (3.5)

(Remember that we chose C to be real.) It is clear from (3.2) and (3.5) that PT invariance of
the potential is satisfied for the z̃(x) = z(x) cases if (α∗)2 = α2 and (β∗)2 = β2 holds, i.e. for
α∗ = ±α and β∗ = ±β. This can happen if α and β are purely real or imaginary. Together
with C and ε then there are four real parameters which define the potential shape.

When z̃(x) = −z(x) holds, then the change of the sign in the last term in (3.5) has to be
compensated with the appropriate choice of α and β. Requiring also PT invariance of the
other potential term (which is an even function of z(x)) restricts the parameters to (α∗)2 = β2,
i.e. we obtain α∗ = ±β. The choice α∗ = β leads to (α + β)∗ = α + β, and in this case the
energy eigenvalues remain unchanged and are purely real. The number of real parameters is
then, again four, also consideringC and ε. The choice α∗ = −β also secures PT invariance of
the potential, however, in this case the energy eigenvalues might become complex in principle,
due to (α + β)∗ = −(α + β).

We have listed the individual PI-type potentials and the corresponding energy formulae
in table 1, along with the conditions for PT invariance. For the sake of completeness we also
display the z(x) = cosh(2ax+iε) and z(x) = cos(2ax+iε) options, which are not independent
cases, rather they can be obtained from the z(x) = cosh(ax +iε) and z(x) = cos(ax +iε) cases
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Table 1. Summary of PT -symmetric potentials belonging to the shape-invariant class. In identifying the individual potentials we followed the notation of [20],
but also displayed the names usually associated with them in the literature [22]. Conditions for having PT symmetry are indicated in each case.

Type(z(x)) V (x) En Conditions for PT symmetry

PI(i sinh(ax + iε)) −
(
α2+β2

2 − 1
4

)
a2

cosh2(ax+iε)
− ia2

(
α2−β2

2

)
sinh(ax+iε)

cosh2(ax+iε)
−a2

(
n + α+β+1

2

)2
α∗ = ±α, β∗ = ±β

(Scarf I, hyperbolic)

PI(cosh(ax + iε))
(
α2+β2

2 − 1
4

)
a2

sinh2(ax+iε)
+ a2

(
α2−β2

2

)
cosh(ax+iε)
sinh2(ax+iε)

−a2
(
n + α+β+1

2

)2
α∗ = ±α, β∗ = ±β

(generalized Pöschl–Teller)

PI(cosh(2ax + iε)) − (
β2 − 1

4

)
a2

cosh2(ax+ i
2 ε)

+
(
α2 − 1

4

)
a2

sinh2(ax+ i
2 ε)

−a2(2n + α + β + 1)2 α∗ = ±α, β∗ = ±β
(Pöschl–Teller II)

PI(cos(ax + iε))
(
α2+β2

2 − 1
4

)
a2

sin2(ax+iε)
+ a2

(
α2−β2

2

)
cos(ax+iε)
sin2(ax+iε)

a2
(
n + α+β+1

2

)2
α∗ = ±α, β∗ = ±β

(Scarf I, trigonometric)

PI(cos(2ax + iε))
(
β2 − 1

4

)
a2

cos2(ax+ i
2 ε)

+
(
α2 − 1

4

)
a2

sin2(ax+ i
2 ε)

a2(2n + α + β + 1)2 α∗ = ±α, β∗ = ±β
(Pöschl–Teller I)

PI(sin(ax + iε))
(
α2+β2

2 − 1
4

)
a2

cos2(ax+iε)
+ a2

(
α2−β2

2

)
sin(ax+iε)

cos2(ax+iε)
a2

(
n + α+β+1

2

)2
α∗ = ±β

(Scarf I, trigonometric)

PII(tanh(ax + iε)) −a2 s(s+1)
cosh2(ax+iε)

− 2iλa2 tanh(ax + iε) −a2
(
(s − n)2 − λ2

(s−n)2
)

(s(s + 1))∗ = s(s + 1), λ∗ = λ
(Rosen–Morse II, hyperbolic)

PII(coth(ax + iε)) a2 s(s+1)
sinh2(ax+iε)

− 2iλa2 coth(ax + iε) −a2
(
(s − n)2 − λ2

(s−n)2
)

(s(s + 1))∗ = s(s + 1), λ∗ = λ
(Eckart)

PII(−i cot(ax + iε)) a2 s(s+1)
sin2(ax+iε)

− 2iλa2 cot(ax + iε) a2
(
(s − n)2 + λ2

(s−n)2
)

(s(s + 1))∗ = s(s + 1), λ∗ = λ
(Rosen–Morse I)

PII(i tan(ax + iε)) a2 s(s+1)
cos2(ax+iε)

+ 2iλa2 tan(ax + iε) a2
(
(s − n)2 + λ2

(s−n)2
)

(s(s + 1))∗ = s(s + 1), λ∗ = λ
(Rosen–Morse I)

LI( ω2 (x + iε)2) ω2

4 (x + iε)2 + (α2 − 1
4 )

1
(x+iε)2

2ω(n + α+1
2 ) α∗ = ±α

(harmonic oscillator)
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by the a → 2a replacement, also using formulae connecting hyperbolic and trigonometric
functions with similar functions having half the original arguments. We also included in table 1
the z(x) = sin(ax + iε) case, which did not appear in [20] as an independent problem, because
z(x) = cos(ax) could be trivially obtained from z(x) = sin(ax) by a simple coordinate shift.
As noted previously, real shifts of the coordinate are not compatible with PT invariance, in
general (e.g. δ = iε is purely imaginary), therefore these two cases cannot be obtained from
each other now, only if we define the potentials to be periodic.

The PI-type potentials listed in table 1 are complex, in general, due to the iε constant.
If we set ε = 0, the symmetric potential terms become real, while the odd ones turn purely
imaginary. In fact, in this case the z(x) = cosh(ax + i0) and the z(x) = cos(ax + i0) potentials
become fully real for any allowed α and β. The remaining two cases, z(x) = i sinh(ax + i0)
and z(x) = sin(ax + i0) present imaginary antisymmetric potential terms too.

There are also further special values of ε which deserve attention. It can be shown that
the ε = 0 version of the two hyperbolic PI-type potentials can be obtained from the general
z(x) = sinh(ax + iε) and z(x) = cosh(ax + iε) cases alike, when ε is set to kπ or π/2 + kπ .
This means that the two potentials can be continuously transformed into each other by carefully
tuning ε.

According to equation (2.7), the solutions of the Schrödinger equation expressed in terms
of a Jacobi polynomial have the form

ψ(x) ∼ (1 − z(x)) α2 + 1
4 (1 + z(x))

β

2 + 1
4P (α,β)n (z(x)). (3.6)

The regularity of these wavefunctions can be controlled by appropriate relations for α, β and
n, whenever |z| → ∞ or z = ±1 can occur. For the case of |z| → ∞ regular behaviour of
ψ(x) can be guaranteed by the prescription n + [Re(α + β) + 1]/2 < 0. This condition sets an
upper limit for n: n < −[Re(α + β) + 1]/2. When z = 1 or −1 can occur, then the regularity
of ψ(x) requires Re(α) > − 1

2 and Re(β) > − 1
2 , respectively. Now let us see which of these

conditions apply to the individual PI-type potentials listed in table 1.
In the z(x) = i sinh(ax + iε) case only |z| → ∞ has to be taken care of, for x → ±∞.

(We note that z = ±1 can also occur here if sin(ε) = ±1 holds, because in this case
z(x) → ∓ cosh(ax). Since this special case corresponds to a particular example for the
next PI-type potential, we do not consider it here.) Then n < −[Re(α+β)+ 1]/2 sets an upper
limit for the number of bound states. This condition also means that there are no bound states
for this potential if both α and β are imaginary. Special cases of this potential with ε = 0 are
mentioned in [8] (α = λ

µ
+ 1, β = λ

µ
− 1, a = µ) and [9] (α = −b−A− 1

2 , β = b−A− 1
2 ,

a = 1).
For z(x) = cosh(ax+iε) the n < −[Re(α+β)+1]/2 applies again, because |z| → ∞ can

occur. Now z = ±1 can also appear, if cos(ε) = ±1. In these cases a singularity appears in
the potential at x = 0. (We note that this singularity also appears for the conventional version
of this potential, which is considered a radial problem.) If we exclude these particular values
of ε, then the potential becomes finite everywhere, and there are no further restrictions for the
potential parameters. Similarly to the previous case, there are no bound states if both α and
β are imaginary. The PT -symmetric Pöschl–Teller potential discussed in [12] corresponds to
this case, taking α = −A− 1

2 , β = B − 1
2 , C = −4, a = 1 and using −2ε instead of ε.

In the trigonometric cases z(x) = cos(ax + iε) and z(x) = sin(ax + iε), |z| → ∞ cannot
occur, therefore no conditions limit the possible values of n. Furthermore, z = ±1 can also
occur for ε = 0 only, in which case these potentials have singularities at ax = kπ , and
ax = (k + 1

2π), respectively, similarly to the conventional versions of these problems. Then
the Re(α) > − 1

2 and Re(β) > − 1
2 conditions also have to be observed in both cases, and have

to be combined with the other conditions for α and β required by PT symmetry.
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The regularization of the potentials by eliminating their singularities with appropriate
choices of ε relaxes the boundary conditions considerably. This means that in principle, the
second independent solution of the Schrödinger equation (which is disqualified due to these
boundary conditions for the conventional problems [33]) also becomes allowed. In fact, the
general solution of the Schrödinger equation can then be written in terms of two hypergeometric
functions as

ψ(x) ∼ (1 − y) 1
2 (a+b−c)+ 1

4
(
C1y

2c−1
4 F(a, b; c; y) + C2y

3−2c
4 F(b − c + 1, a − c + 1; 2 − c; y))

(3.7)

where y = (1 − z(x))/2. The particular solution (3.6) can be obtained from (3.7) by setting
C2 = 0, a = −n, b = n+α+β+1 and c = α+1, which reduces the remaining hypergeometric
function to a Jacobi polynomial. (See equation (22.5.42) in [27] and also the appendix for the
general treatment of the hypergeometric function in terms of the formalism of section 2.) The
second solution does not introduce anything essentially new, rather it just extends the allowed
values of α (to −α), according to the less strict boundary conditions.

Let us turn to the PII case [20] defined by the differential equation (z′)2(1 − z2)−2 = C,
in which case the fourth term on the right-hand side of (3.1) becomes a constant:

E − V (x) = −C
[(
α + β

2

)2

+

(
α − β

2

)2
]

+ C

(
n +

α + β

2

)(
n +

α + β

2
+ 1

)
(1 − z2(x))

−2C

(
α + β

2

) (
α − β

2

)
z(x). (3.8)

With a parameter transformation the n dependence can be transferred to the constant (energy)
term. The potential can then be written as

V (x) = −Cs(s + 1)(1 − z2(x))− 2C%z(x) (3.9)

where s = n+ (α+β)
2 or s = −n− (α+β)

2 −1 and% = α−β
2

α+β
2 . This gives α = s−n+%/(s−n),

β = s− n−%/(s− n), or α = −s− n− 1 −%/(s + n + 1), β = −s− n− 1 +%/(s + n + 1).
The energy eigenvalues are then given by E = −C(

(s − n)2 + %2

(s−n)2
)

or E = −C(
(s + n +

1)2 + %2

(s+n+1)2
)
. In order to simplify the formalism, in what follows we consider only the first

set of the above relations: the second set can be obtained by the s → −s − 1 substitution.
The z(x) functions are again supplied by the current version of (2.9):

∫
dz

1 − z2
= C1/2x + δ. (3.10)

In [20] the δ = 0 choice was made and three independent solutions were identified:
z = tanh(ax), coth(ax) and −i cot(ax) with C = a2, a2 and −a2, respectively. One further
solution, z = i tan(ax) with C = −a2 is essentially the same as the −i cot(ax) case, therefore
it was not discussed as a separate possibility.

Considering the PT -symmetric case, we again find that the δ = iε choice has to be made
in order to reach PT invariance of the potentials. The transformation properties of the four
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possible z(x) functions under the PT operation are the following:

PT : z(x) = tanh(ax + iε) −→ z̃(x) ≡ (tanh(a(−x) + iε))∗

= − tanh(ax + iε) = −z(x)
PT : z(x) = coth(ax + iε) −→ z̃(x) ≡ (coth(a(−x) + iε))∗

= − coth(ax + iε) = −z(x)
PT : z(x) = −i cot(ax + iε) −→ z̃(x) ≡ (−i cot(a(−x) + iε))∗

= − i cot(ax + iε) = z(x)
PT : z(x) = i tan(ax + iε) −→ z̃(x) ≡ (i tan(a(−x) + iε))∗ = i tan(ax + iε) = z(x).

(3.11)

Similarly to the PI case, the last z(x) function can be obtained from the other trigonometric one
by using δ = −π/(2a)+ iε instead of δ = iε. However, we again considered it an independent
case because finite real translations are not compatible with PT invariance, in general. The
PT -transformed potential (3.9) becomes

Ṽ (x) = −Cs∗(s∗ + 1)(1 − z̃2(x))− 2C%∗z̃(x) (3.12)

and the corresponding energy eigenvalues are Ẽ = −C(
(s∗−n)2+ (%∗)2

(s∗−n)2
)
. For the z̃(x) = z(x)

cases PT invariance is reached if (s(s + 1))∗ = s(s + 1) and %∗ = %. This means that % has
to be real, while s is either real, or s = − 1

2 + iσ . In the first case α and β are both real, and
the energy eigenvalues are also real. When z̃(x) = −z(x), then for PT invariance we need
(s(s + 1))∗ = s(s + 1) and%∗ = −%. In this case% has to be imaginary, while s can have the
same values as in the previous case. If s is real, then α∗ = β holds, and the energy eigenvalues
are real.

Table 1 contains the individual PII-type potentials, the energy formulae, and the conditions
for PT invariance. Similarly to the PI case, these potentials are also complex, in general, and
for ε = 0 their symmetric terms become real, while their antisymmetric terms (the second
term of all four potentials) turn purely imaginary. We again find that the ε = 0 version of
the two hyperbolic potentials can be obtained from the general z(x) = tanh(ax + iε) and
z(x) = coth(ax + iε) cases alike, when ε is set to kπ or π/2 + kπ , therefore the two potentials
can be continuously transformed into each other. Yet another similarity with the PI case is that
the singularities of the potentials appear only for special values of ε.

The solutions of the Schrödinger equation are now

ψ(x) ∼ (1 − z(x)) α2 (1 + z(x))
β

2 P (α,β)n (z(x)). (3.13)

The regularity of these wavefunctions has to be examined again for |z| → ∞ and z = ±1.
For |z| → ∞ regularity requires n < −[Re(α +β)]/2 = Re(s)−n, i.e. n < Re(s)/2, while if
z = 1 or −1 can happen, the conditions Re(α) > 0 and Re(β) > 0 have to be observed. For
the potentials listed in table 1 these conditions mean the following.

In the z(x) = tanh(ax + iε) case only z = ±1 can occur (for x = ±∞, irrespective of ε),
and one needs Re(α) > 0 and Re(β) > 0. If s is real, then these relations both lead to s > n,
because Re(%/(s−n) = 0, due to the imaginary value of%, prescribed by PT invariance. (We
note that in the conventional case, when% can have real values, these conditions lead to stricter
limits for n.) If s is complex: s = − 1

2 + iσ , then the Re(α+β) = 2 Re(s)−2n = −1−2n > 0
condition means that there can be no bound states in this potential.

For z(x) = coth(ax + iε) the Re(s) > n condition applies again (for z = ±1, i.e.
x → ±∞), but |z| → ∞ can also occur at x = 0, if ε = kπ . In this case a singularity appears,
just like in the conventional version of this potential, which is therefore considered a radial
problem. If we consider only the regularized (i.e. non-singular) PT -symmetric potentials
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with ε �= kπ , then we again find that bound states can appear only for real values of s. (In
the conventional case with real parameters the boundary condition at x = 0 also requires a
negative % with −% > s2, which is reasonable, because only in this case can one have an
attractive potential component which can support bound states.) This potential has already
been considered as a PT -symmetric problem [12] with the specific parameters % = −B,
a = 1, ε = 0 and s = A− 1 (or s = −A).

In the trigonometric cases z(x) = −i cot(ax + iε) and z(x) = i tan(ax + iε), z = ±1
cannot occur (irrespective of ε), and therefore there are no limits for n. |z| → ∞ can also
happen for ε = 0; if these PT -symmetric potentials are regularized by taking ε �= 0, then there
are no conditions at all for the parameters following from the regularity of the wavefunctions.
For ε = 0 one obtains Re(s) < − 1

2 , which basically sets the coupling parameter s(s + 1) of
the x−2-type singular term to the repulsive or the ‘weakly attractive’ regime, where physically
acceptable solutions are possible.

Again, the relaxed boundary conditions (following from the cancellation of singularities)
mean that the general solution of the Schrödinger equation should be considered, not just the
particular solution in (3.13). This can be expressed in terms of two hypergeometric functions
as

ψ(x) ∼ (1 − y) 1
2 (a+b−c)(C1y

c−1
2 F(a, b; c; y) + C2y

1−c
2 F(b − c + 1, a − c + 1; 2 − c; y))

(3.14)

with y = (1 − z(x))/2. The particular solution (3.13) can be obtained from (3.14) by setting
C2 = 0, a = −n, b = n + α + β + 1 and c = α + 1. The second solutions again, extend
the allowed range of the α parameter to values (−α) which are not allowed when there are
singularities for y = 0, i.e. z(x) = 1. This becomes relevant to the hyperbolic cases in the
x → ±∞ limit.

3.2. The generalized Laguerre polynomials L(α)n (z)

For the generalized Laguerre polynomials L(α)n (z) [27] we have Q(z) = −1 + (α + 1)/z and
R(z) = n/z. The current form of (2.6) becomes

E − V (x) = z′′′(x)
2z′(x)

− 3

4

(
z′′(x)
z′(x)

)2

+
(z′(x))2

z(x)

(
n +

α + 1

2

)
− (z′(x))2

4

− (z
′(x))2

z2(x)

(
α2 − 1

4

)
(3.15)

and the corresponding solutions, according to (2.7) are

ψ(x) ∼ (z′(x))−1/2(z(x))
α+1

2 exp(−z(x)/2)L(α)n (z(x)). (3.16)

Picking the third term on the right-hand side of (3.15) as a constant and setting (z′)2z−1 = C

we obtain the LI case [20]. Equation (3.15) can be rewritten as

E − V (x) = C
(
n +

α + 1

2

)
− C

4
z(x)− C

4z(x)

(
α +

1

2

) (
α − 1

2

)
. (3.17)

According to (2.9) the solution of the defining differential equation of z(x) is given by

z(x) = C

4
(x + δ̄)2 (3.18)
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with δ̄ = δ/C1/2. Again we find that only the δ̄ = iε choice with real ε can result in a
PT -invariant potential and that the PT transform of z(x) is

PT : z(x) = C

4
(x + iε)2 −→ z̃(x) =

(
C

4
(−x + iε)2

)∗
= C

4
(x + iε)2 = z(x). (3.19)

The PT transform of (3.17) is

E∗ − (V (−x))∗ = C
(
n +

α∗ + 1

2

)
− C

4
z̃(x)− C

4z̃(x)

(
α∗ +

1

2

) (
α∗ − 1

2

)
. (3.20)

Comparing equations (3.17) and (3.20) we find that PT symmetry holds if (α2)∗ = α2 is
satisfied, i.e. if α is purely real or imaginary (α∗ = ±α). In the former case the energy
eigenvalues will be real, despite the complex potential terms.

Using (3.16) a particular solution of the corresponding Schrödinger equation is written as

ψ(x) ∼ (z(x)) 2α+1
4 exp(−z(x)/2)L(α)n (z(x)). (3.21)

Since Re(z) > 0 for x → ∞ (and also for x → −∞), the solutions vanish asymptotically.
In the conventional treatment of this problem [20] we chose δ̄ = 0 in order to obtain

a radial problem defined on the positive semi-axis. Then we also had C = 2ω > 0 which
rendered the energy to be positive, and α = l + 1

2 to account for the centrifugal term. This
means that the wavefunction behaves like xl+1 near the origin. Solutions which are non-zero
at the origin are not considered physical in the conventional case, when solutions only on the
positive semi-axis are taken into account. However, in the PT -symmetric case the singularity
represented by the centrifugal barrier vanishes if ε �= 0 holds, therefore the problem can (and
should) be extended to the full x-axis. In this case the general solution of the problem can be
written in terms of two confluent hypergeometric functions [27]:

ψ(x) ∼ exp(−z(x)/2)[C1z
2c−1

4 (x)F (a, c, z(x)) + C2z
3−2c

4 (x)F (1 + a − c, 2 − c, z(x))].
(3.22)

ForC2 = 0, a = −n and c = α+1 (3.22) reduces to (3.21). The solutions withC1 = 0 are now
allowed, and this leads to a richer spectrum than that obtained in the conventional treatment.
This is because α and −α both become allowed in the formulae. This has been discussed in
[11], where the PT -symmetric harmonic oscillator was introduced, and this possible double
sign of α has been attributed to a ‘quasi-parity’ quantum number. The parameters used there
are related to the present ones via C = 4, α2 − 1

4 = G and ε = −c.
We note that this extension of the radial problem to the full line in the PT symmetry context

also contains the one-dimensional harmonic oscillator. In that case the centrifugal barrier does
not appear, which corresponds to settingα to 1

2 and − 1
2 . The generalized Laguerre polynomials

then reduce to Hermite polynomials, which are odd and even, respectively, corresponding to
the odd and even solutions of the one-dimensional problem. In the PT -symmetric context
there is no point in discussing the Hermite polynomials and the one-dimensional harmonic
oscillator separately, as in [20] for ordinary quantum mechanics.

When we attempt to analyse the LII (Coulomb) and LIII (Morse) cases in the PT -
symmetric context by solving the differential equations (z′)2 = C and (z′)2z−2 = C (as
in [20]), we arrive at the limits of applicability of the present approach. Their nature is clearly
visible from the form of the general solutions (3.16): the normalizability of the wavefunctions
does not depend on the powers of the various terms in (3.16) as for Jacobi polynomials,
rather the boundary conditions are determined by the z(x) function itself, which appears in an
exponent. In particular, one should have z → ∞ for x → ±∞ to secure normalizability of
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the wavefunctions. This was guaranteed in the LI (harmonic oscillator case) by the form of
z(x) in (3.18), but the corresponding solutions in the Coulomb and the Morse cases, i.e.

z(x) = C1/2x + δ (3.23)

and

z(x) = exp(C1/2x + δ) (3.24)

lead to infinities at one limit. In conventional quantum mechanics the latter two cases are
considered radial problems, therefore it is enough to have regularity of z(x) for x → ∞. A
way around this problem can be found if one replaces the linear integration path (x + iε)
with curved ones. One possible way to find such curved integration paths is to apply a
variable transformation to the PT -symmetric harmonic oscillator problem [11] to obtain PT -
symmetric Morse [16] and Coulomb [18] potentials.

4. Summary

We revisited a method introduced previously [20] to analyse systematically a large class of
potentials and studied the conditions under which PT -symmetric potentials can be derived
with it. This method classifies the potentials in terms of the special functions appearing in
the solutions of the Schrödinger equation, and also the function z(x) describing the variable
transformation taking the Schrödinger equation into the second-order differential equation of
some given special function. Here we considered the Jacobi polynomials and the generalized
Laguerre polynomials as special functions.

When the method is extended to PT -symmetric problems, some modifications of the
original formulation have to be made. One is that a constant of integration representing
previously only an unimportant coordinate shift became an important factor, notably in most
cases it has to be defined as a purely imaginary number in order to obtain PT invariance.
(An exception to this is some trigonometric potential forms, where specific real components
of it can also occur, due to periodicity.) Choosing this constant to be imaginary meant that
the PT transform of the function z(x), z̃(x) ≡ (z(−x))∗ was related to the original z(x) by
z̃(x) = ±z(x) in most cases, which made it easier to secure PT symmetry for the potentials.

Besides the imaginary coordinate shift, sometimes certain conditions also had to be
imposed on the potential parameters to guarantee PT symmetry. We showed that one can
find purely real energy spectra in all these cases, although the potentials have complex terms,
in general. This is a natural consequence of the method we followed: as long as the constant
C which appears in the defining differential equation of the function z(x) is real, real energy
eigenvalues can be obtained. We identified several PT -symmetric problems found previously
and interpreted them in terms of our general scheme.

Our approach supplies equations for E − V (x), and we studied the PT transform of the
potential starting from this kind of equation: Ẽ − Ṽ (x) = E∗ − (V (−x))∗. Adding to these
equations the kinetic term, which is, of course, PT invariant, the PT symmetry of the whole
Hamiltonian can also be studied.

For PT -symmetric potentials the strong condition of Hermiticity is lost. Such a possibility
has been discussed by Andrianov et al [10] who noticed that in supersymmetric quantum
mechanics (SUSYQM) the superpotential W(x) can become complex, in general, therefore
the SUSYQM operatorsA = d

dx +W(x) andA† = − d
dx +W(x) can cease to be the adjoints of

each other, and give non-Hermitian HamiltoniansH− = A†A andH+ = AA†. In [8, 15] it was
shown that the reality of spectra of certain PT -symmetric potentials can indeed be understood
as a direct consequence of their isospectrality with a Hermitian SUSYQM partner. In the
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next step of development, a consequent understanding of combination of supersymmetry with
the genuine PT symmetry has recently been achieved in [34]. Within our present approach a
straightforward way towards complexified potentials which support real spectra quite naturally
follows from the general form of superpotentials

W(x) = − d

dx
ln f (x) = −1

2
Q(z(x))z′(x) +

1

2

z′′(x)
z′(x)

(4.1)

as studied in [20].
One important implication of PT invariance is [2] that the problems which have been

interpreted as radial problems and were defined only on the positive half axis x > 0 can now
be extended to the full x-axis, because the terms singular at the origin become finite due to the
introduction of the imaginary coordinate shift. Other singularities are also cancelled when the
imaginary coordinate shift is implemented. This, of course, relaxes the boundary conditions
of the solutions and consequently, previously disqualified solutions become acceptable. This
mechanism leads to a richer spectrum, in general.

We note that the present systematic method of constructing PT -symmetric complex
potentials is different from the conventional approaches to complex potentials, when simply
some potential parameters are set to complex values, and when the energy eigenvalues also
become complex. In our method the complex potential terms that appear due to the PT
symmetry are introduced in a way that can prevent the energy from becoming complex. Indeed,
the term responsible for the energy in the formulae (see, e.g., equation (2.6)) is ‘hand-picked’
and can be guaranteed to remain real. This selection also defines the variable transformation
function z(x) as in (2.9).

In fact, in a line tested by the orthogonal polynomials the case of the hypergeometric and
the confluent hypergeometric functions can also be studied naturally. In [20] devoted to the
Hermitian case it was shown that the method supplies an appropriate framework to identify all
the known shape-invariant potentials but it makes much wider potential classes accessible too.
In particular, the procedure works quite naturally for the Natanzon potentials. The PIII potential
[30], for example, is derived in the same way as the PI and PII potential classes by solving the
(z′)2z(1 − z2)−2 = C differential equation, which turns the last term of (3.1) into a constant
(energy) term. The generalized Coulomb problem [31, 32], which contains both the Coulomb
and the harmonic oscillator potentials as a special case is obtained by setting the combination
of two terms in (3.15) to a constant. This is also the case for the Ginocchio potential [28],
which can be obtained from (3.1) by setting α = β, reducing the Jacobi polynomial to an
ultraspherical (or Gegenbauer) one [27], and considering the φ(z) = (δ + 1 − z2)(1 − z2)−2 in
(2.8) [35].

The ‘implicit’ nature of the latter Hermitian examples might complicate the PT -symmetric
formalism to some extent, but in principle, appropriate complexifications can be derived
similarly. It can be shown, for example, without deeper analysis that the Ginocchio potential
[28] can be made PT symmetric by using our method. In particular, the actual form of
equation (2.9) is now [35]

δ1/2 tanh−1 (
zδ1/2(δ + 1 − z2)−1/2

)
+ tan−1

(
z(δ + 1 − z2)−1/2

) = C1/2x + iε (4.2)

and even this implicit functional form shows (e.g. via a series expansion) that the PT transform
of z(x), z̃(x) ≡ (z(−x))∗ = −z(x), therefore V (x), in which z(x) appears only through z2(x)

[35] must be PT invariant. (We note that we followed the notation of [35], because it is
closer to the formalism used in this contribution, nevertheless, the original notation of [28]
is readily obtained from it [35].) For potentials beyond the Natanzon class, one has to check
each case individually. There the F(z) function can have more general forms, and it is not



7178 G Lévai and M Znojil

guaranteed that it satisfies a second-order differential equation as in our approach. However,
our experience with the present potentials might help us to understand how PT invariance and
real spectra can arise for these more general potentials too.
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Appendix

Here we present the essential formulae for the general Natanzon potential class obtained using
the methods described in section 2. We also show how the corresponding results for the Jacobi
and generalized Laguerre polynomials can be obtained from them.

Identifying the hypergeometric function F(a, b; c; z) with F(z) in equation (2.2), one
obtainsQ(z) = cz−1 + (c − a − b − 1)(1 − z)−1 and R(z) = −abz−1 − ab(1 − z)−1. From
this, the current form of (2.6) is

E − V (x) = z′′′(x)
2z′(x)

− 3

4

(
z′′(x)
z′(x)

)2

+
(z′(x))2

4z2(x)(z(x)− 1)2
[−(a − b − 1)(a − b + 1)z(x)(z(x)− 1)

− c(c − 2)(1 − z(x))− (a + b − c − 1)(a + b − c + 1)z(x)]. (A.1)

With the relation

z′(x) ≡ dz

dx
= 2z(1 − z)
(R(z))1/2 ≡ 2z(1 − z)

[az(z− 1) + c0(1 − z) + c1z]1/2
(A.2)

the standard form of the six-parameter Natanzon potential family is obtained [25]. Of the six
parameters three (a, c1 and c0) control the variable transformation z(x), while the remaining
three,

f = −(a − b − 1)(a − b + 1)

h0 = −c(c − 2)

h1 = −(a + b − c − 1)(a + b − c + 1)

(A.3)

determine the potential shape. The general solution is then

ψ(x) ∼ R1/4(z(x))(1 − z(x)) a+b−c
2

[
A1z

c−1
2 (x)F (a, b; c; z(x))

+A2z
1−c

2 (x)F (b − c + 1, a − c + 1; 2 − c; z(x))]. (A.4)

From this usually only one of the particular solutions is regular due to the opposite powers
((c − 1)/2 and (1 − c)/2) of z(x) in front of the two functions, and the bound-state solutions
are expressed with A2 = 0.

The Jacobi polynomials can be obtained as special cases of the hypergeometric function
in various ways. Using P (α,β)n (z) ∼ F(−n, n + α + β + 1;α + 1; 1−z

2 ) [27] one can identify the
PI- and PII-type potentials with certain subclasses of the Natanzon potential family. In fact, it
turns out that the PI class can be obtained by setting a = −4/C, c1 = c0 = 0 in R(z), the PII
class corresponds to the a = 0, c1 = c0 = 1/C choice, while the Ginocchio potential follows
from a = −1/C, c1 = δ/C, c0 = 0 [35]. In the original notation of [28], the latter case is
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a = (1 − λ2)/λ4 and c1 = 1/λ4, which reduces to the parameter set of the PI case for λ = 0.
In fact, this corresponds to the simple Pöschl–Teller limit of the Ginocchio potential.

Similar formulae can be derived for the Natanzon confluent potentials [26] too. Then for
the confluent hypergeometric functionsF(a, c; z) one hasQ(z) = cz−1−1 andR(z) = −az−1

and (2.6) becomes

E − V (x) = z′′′(x)
2z′(x)

− 3

4

(
z′′(x)
z′(x)

)2

+
(z′(x))2

4z2(x)

[
2(c − 2a)z(x)− z2(x)− c(c − 2)

]
. (A.5)

Using the notation of [26] (with z = h) and the relation

z′(x) ≡ dz

dx
= 2z

(R(z))1/2 ≡ 2z

[σ2z2 + σ1z + c0z]1/2
(A.6)

the general formula of this potential class is obtained [26]:

V (x) = g2z
2 + g1z + η

R(z) +
σ1z− σ2z

2

R2(z)
− 5σ 2

1 − 4σ2c0

R3(z)
. (A.7)

Then the energy eigenvalues are obtained by choosing the parameters in such a way that the

E = − 1

R(z)
[
(1 − g2)z

2 + [2(2a − c)− g1] + [(c − 1)2 − η]
]

(A.8)

becomes a constant. Again, of the six parameters three (σ2, σ1 and c0) control the variable
transformation z(x), while the remaining three, (g2, g1 and η) determine the potential shape.
The general solution then is

ψ(x) ∼ R1/4 exp(−z(x)/2)[A1z
c−1

2 (x)F (a, c; z(x)) + A2z
1−c

2 (x)F (1 + a − c, 2 − c; z(x))].
(A.9)

The generalized Laguerre polynomials are obtained by L(α)n (z) ∼ F(−n, α + 1; z)
[27]. The three basic problems discussed in section 3 follow from these formulae by
setting σ1 = 2/C1/2, σ2 = c0 = 0 (LI case, harmonic oscillator), σ2 = 2/C1/2

n ,
σ1 = c0 = 0 (LII case, Coulomb problem) and c0 = 2/C1/2, σ1 = σ2 = 0 (LIII case,
Morse potential).
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[26] Cordero P and Salamó S 1991 J. Phys. A: Math. Gen. 24 5299
[27] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)
[28] Ginocchio J N 1984 Ann. Phys., NY 152 203

Ginocchio J N 1985 Ann. Phys., NY 159 467
[29] Brajamani S and Singh C A 1990 J. Phys. A: Math. Gen. 23 3421

Williams B W 1991 J. Phys. A: Math. Gen. 24 L667
Williams B W and Poulios D 1993 Eur. J. Phys. 14 222
Williams B W, Rutherford J L and Lévai G 1995 Phys. Lett. A 199 7
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